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Abstract: l-Halo- and 1,4-dihalotriquinacenes readily react with secondary amines and 

alkyl lithium compounds to yield bridgehead olefinic and double bridgehead olefinic deriva- 

tives of the tricyclo[5.2.1.04*10 ldecatriene system, probably by an $2' type attack of the 

soft nucleophile. 

The long searched-for acepentalene (1) possesses the same carbon skeleton as triqui- 

nacene (2), and therefore the latter has been suggested as a potential precursor to 1 [’ I. 
With regard to its thermodynamic stability 1 probably not only suffers from an unfavorable 

Z-electronic system[21, but also from a considerable amount of bond and angle strain. Among 

the 16 isomeric tricyclo[5.2.1.04~10 ldecatrienes 2 is the only one without a bridgehead 

double bond. According to force field calculations[3] performed on the three isomeric 

monoolefins 3 - 5[41 all other 15 isomers of 2 are predicted to be less stable than tri- 

quinacene (2). In fact, 3 was calculated to be 4.1 kcal/mol more stable than the bridge- 

head olefin 4, and 4 in turn 12.2 kcal/mol more stable than the twofold bridgehead olefin 

5, in which all four substituents on the double bond must be bent out of plane. 

3 4 5 

AH#callmole) 6.83 10.96 23.16 

Under these circumstances it is of particular interest that bridgehead olefinic 

tricyclo[5.2.1.04*101decatriene derivatives are readily accessible from the less strained 

triquinacene system. Reaction of bridgehead mono- and dihalo-triquinacenes 6 [5,61 with a 

number of secondary amines and with alkyl lithium reagents in general lead to the allyl- 

rearranged bridgehead olefinic derivatives 7 (see scheme 1 and table 1). 
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Scheme 1. (For conditions see table 1) 

/ I \ 
6a-d NU NU Nu 

x1,x2 = H,CI.Br 70-O 
8e,t 

Table 1. ProductsL71, yields and conditions for reactions of halides 6 with secondary 

amines and alkyl lithium compounds. 

Educt X1 X2 Nucleophile Product Nu Yield (%) Conditions[*I 
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[*I I: Thick-wall closed reaction vessel. II: Neat, 5d, 25'C. III: Byproduct 10% l-dime- 

thylaminotriquinacene[8]. IV: Isolation by glc. V: n-Hexane/ether, N2, 12h, 25°C. 

VI: Byproduct 3% I-methyltriquinacene. VII: n-Hexane, N2, lh, -78'C. VIII: Neat, 3d, 

25OC. IX: Byproduct 3% 1-t-butyltriquinacene. X: n-Hexane, N2, 2h, -78°C. XI: Neat, 

25min, 25'C. XII: Neat, 14d, 25'C. 

Only 1,4-dibromotriquinacene (6d), not the dichloride 6b, reacted with 2 equivalents 

of the secondary amine to give the interesting conjugated trienes 8 by a twofold ally1 

shift. The structural assignments of all compounds 7 and 8 could readily be made on the 

basis of their 'H-nmr spectrac7] ( see table 2). The unsubstituted tricyclo[5.2.1.04~101- 

deca-1,5,8-triene was prepared for comparison according to a procedure developped by L.A. 

Paquette and J. Kramer-[']. The exo-configuration of compounds 7 and 8 follows from the _ 

coupling constants between the protons on C-3 and C-4, which were found to be smaller than 

2.6 Hz in all cases, indicating a dihedral angle between 60 and 90'. In contrast the 

coupling constant 3J between protons exo-3-H and 4-H in the unsubstituted compound r91 was - 
5.8 Hz, corresponding to a dihedral angle <60°. 
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Table 2. NMR-spectroscopic data of selected compounds 7 and 8,dTMS in ppm, J in HZ 

7e 'H-NMR (270 MHz, COC13): 2.26(s, 6H, N(CH3)2), 3.03(mc, 4-H, J3,4 = 2.2, J4,5 = 1.8, 

J4,6 = 1.9, J4,lO = 5.7), 3.33(mc, 7-H, J6,7 = 1.6, J5,7 = 2.0, J7,8 = 2.6, J7,g = 1.1, 

J7,lO = 7.8), 3.60(dd, 3-H, J2,3 = 3.4), 3.74(mc, IO-H, J2,lO = 2.7, J5,lO = 0.6, JsIlo = 

0.6), 5.24(dd, 2-H), 5.26(mc, 5-H, J 5,6 = 5.4), 5.43(ddd, 6-H), 6.04(dd, 8-H, J8,g = 4.7), 

6.10(dd, 9-H). 

7i 'H-NMR (270 MHz, COC13): 0.89(t, 4'-H3, 331-41 q 7.0), 1.32(m, 2'-H4, 3'-H2), 1.49(m, 

I'-H2, Jl1,3 = 7.0), 2.79(ddt, 3-H, J3,4 = 2.3, J2,3 = 3.6), 2.86(ddd, 4-H, J4,5 = 1.8, 

J4,6 = 2.0, J4,10 q 5.6), 3.39(mc, 7-H, J5,7 = 2.1, J6,7 = 1.1, J7,8 = 2.8, J7,g = 1.1, 

J7,lO = 7.8), 3.83(m, IO-H, J 2,10 = 2.5, J5,IO = 0.6, J6 10 = 0.6), 5.38(m, 5-H, J5,6 = 

5.4), 5.4l(dd, 2-H), 5.56(dt, 6-H), 6.06(dd, 8-H, J8,g ='5.6), 6.19(dd, 9-H). - 13C-NMR 

(67.89 MHz, COC13): 14.07(q, C-4'), 22.94(t, C-3'), 30.64(t, C-2'), 35.05(t, C-l'), 

51.66(d, C-3, 'JC,H = 142.0), 53.9l(d, C-4, 'JC,H = 142.1), 56.79(d, C-IO, 'JC H = 131.9), 

57.95(d, C-7, 'J 

128 08(d C 5 orCiH6= 

146.1), 122.46(d, C-8, 'JC,H = 167.4), 128.02(d, C-2, 'Jl,H = 162.4), 

. ,- lJC H 

lJC,H = 

q 162.4), 136.32(d, C-5 or C-6, 'JC,H q 163.1), 139.38(d, C-9, 

164.4), 15;.:3(s;C-1). 

7il 'H-NMR (270 MHz, COC13): 2.30(s, 6H, N(CH3)2), 3.28(mc, 4-H, J3,4 = 2.2, J4,5 = 1.9, 

J4,6 = 2.2, J4,IO = 5.2), 3.70(dd, 3-H, J2,3 = 3.4), 3.89(mc, IO-H, J2,lO = 2.6, J5,lO = 

2.2, J6,10 = 1.9), 5.35(dd, 2-H), 5.50(ddd, 5-H, J5,6 = 5.3), 5.60 (ddd, 6-H), 6.lO(d, 8-H, 

$9 = 5.6), 6.28(d, 9-H). - 13C-NMR (15.08 MHz, COC13): 41.67(N(CH3)2), 43.74(C-4), 

46.85(C-lo), 69.24(C-3), 79.33(C-7), 118.28(C-2 or C-8), 129.15(C-2 or C-8), 129.4l(C-5 or 

C-6), 137.17(C-5 or C-6), 142.22(C-9), 155.93(C-1). 

Tricycld5,2. 1.~4~1(IDldeca-1,5,8-triene 'H-NMR (270 MHz, COC13): 2.55(ddd, endo-3-H, 

Jendo-3,4 = 2.0, J2,w-3 = 3.7, Jendo_3,=_3 = -16.6), 3.00(dm,exo-3-H, 5,x0,3,4 = 5.8, 

J2,~-3 = 3.7). 3.16(dq, 4-H, J4,52.0, J4,6 = 2.0, J4,lO = 5.8), 3.45(m,?%, J5 7 = 

1.9, J6,7 = 1.8, J7,8 = 2.8, J7,g = 0.5, J7,lO q 8.7), 3.78(m, 10-H, J2,10 = 2.2, J6'lo = 

0.6), 5.37(dt, 2-H), 5.41(dt, 5-H, J5,6 = 5.4), 5.54(dt, 6-H), 6.07(dd, 8-H, $9 = &7), 

6.2I(dd, 9-H). - 

'J 

13C-NMR (67.89 MHZ, CDC13): 42.73(t, C-3, 'JC,H = 130.2), 47.72(d, C-4, 

'J 

C,H = 140.8), 52.0l(d, C-7, 'JC,H = 147.7), 59.92(d, C-10, 'JC,H = 128.0), 117.94(d, C-2, 

C,H = 161.4), 127.9l(d, C-8, 'JC,H = 167.4), 128.43(d, C-5 or C-6, 'JC H = 162.7), 

136.09(d, C-5 or C-6, 'JC,H = 163.4), 139.16 (d, C-9, 'JC H = 165.4), 15;.87(s, C-l). , 

8e 'H-NMR (270 MHz, C6D6): 2.25(s, 12H. N(CH3)2), 2.34(dt, 4-H, J3,4 = J4,5 q 1.8, 

J4,lO = 7-l), 3.74(ddd, 3-H, 5-H, J2,3 = J5,6 = 3.2) 4.04(dtt, IO-H, J2 10 = J6 10 = 2.4, , , 
J3,lO = J5,10 = 1.8), 5.02(dd, 2-H, 6-H), 6.26(s, 8-H, 9-H). 

The exclusive formation of products 7 and b can only be rationalized on the basis of 

the HSAB principle['q, since mono- and dihalo-triquinacenes 2 react with hard nucleophiles 

such as hydroxide and methoxide to give bridgehead-substituted triquinacenes by ordinary 

SNl type reactionsr5y81. Softer nucleophiles such as secondary amines or lithium alkyls 
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attack with predominating orbital instead of charge control and therefore cause ally1 

rearrangement in spite of a bridgehead double bond being formed. It seems plausible that 

these bridgehead double bonds are stabilized to some extent by conjugative interaction with 

the neighboring double bond. The ruling of the HSAB principle was most convincingly demon- 

strated by consecutive reaction of 1,4-dichloride 6b with morpholine and methoxide in 

:@jz gi *p$ +- fjy 
6b 0 71 0 9 

0 0 

CH3OD. The initial product 731 gave only 9 in the second step; no deuterium was incorpo- 

rated, which excludes an elimination-addition sequence. 
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